RMVL  1.4.0
Robotic Manipulation and Vision Library
载入中...
搜索中...
未找到
rm::ExtendedKalmanFilter< Tp, StateDim, MeasureDim > 模板类 参考

扩展卡尔曼滤波器 更多...

#include <rmvl/core/kalman.hpp>

类 rm::ExtendedKalmanFilter< Tp, StateDim, MeasureDim > 继承关系图:
rm::ExtendedKalmanFilter< Tp, StateDim, MeasureDim > 的协作图:

Public 成员函数

 ExtendedKalmanFilter ()
 构造新的 ExtendedKalmanFilter 对象
 
void setJa (const cv::Matx< Tp, StateDim, StateDim > &state_jac)
 设置状态方程雅可比矩阵 \(J_A\)
 
void setJh (const cv::Matx< Tp, MeasureDim, StateDim > &observe_jac)
 设置观测方程雅可比矩阵 \(J_H\)
 
void setFa (const std::function< cv::Matx< Tp, StateDim, 1 >(const cv::Matx< Tp, StateDim, 1 > &)> &state_func)
 设置非线性的离散状态方程 \(\pmb f_A(\pmb x)\)
 
void setFh (const std::function< cv::Matx< Tp, MeasureDim, 1 >(const cv::Matx< Tp, StateDim, 1 > &)> &observe_func)
 设置非线性的离散观测方程 \(\pmb f_H(\pmb x)\)
 
void setW (const cv::Matx< Tp, StateDim, StateDim > &process_jac)
 设置过程噪声协方差雅可比矩阵 \(W\)
 
void setV (const cv::Matx< Tp, MeasureDim, MeasureDim > &measure_jac)
 设置测量噪声协方差雅可比矩阵 \(V\)
 
auto predict ()
 扩展卡尔曼滤波的预测部分,包括状态量的先验估计和误差协方差的先验估计
 
auto correct (const cv::Matx< Tp, MeasureDim, 1 > &zk)
 扩展卡尔曼滤波的校正部分,包含卡尔曼增益的计算、状态量的后验估计和误差协方差的后验估计
 
- Public 成员函数 继承自 rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >
 KalmanFilterStaticDatas ()
 构造新的卡尔曼滤波静态数据
 
void init (const cv::Matx< Tp, StateDim, 1 > &x0, Tp error)
 初始化状态以及对应的误差协方差矩阵(常数对角矩阵)
 
void init (const cv::Matx< Tp, StateDim, 1 > &x0, const cv::Matx< Tp, StateDim, 1 > &error)
 初始化状态以及对应的误差协方差矩阵(对角矩阵)
 
void setR (const cv::Matx< Tp, MeasureDim, MeasureDim > &measure_err)
 设置测量噪声协方差矩阵 \(R\)
 
void setQ (const cv::Matx< Tp, StateDim, StateDim > &process_err)
 设置过程噪声协方差矩阵 \(Q\)
 
void setP (const cv::Matx< Tp, StateDim, StateDim > &state_err)
 设置误差协方差矩阵 \(P\)
 

额外继承的成员函数

- Protected 属性 继承自 rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >
cv::Matx< Tp, StateDim, 1 > x
 状态的后验估计 \(\hat{\pmb x}\)
 
cv::Matx< Tp, StateDim, 1 > x_
 状态的先验估计 \(\hat{\pmb x}^-\)
 
cv::Matx< Tp, MeasureDim, 1 > z
 观测向量 \(\pmb z\)
 
cv::Matx< Tp, StateDim, StateDim > Q
 过程噪声协方差矩阵 \(Q\)
 
cv::Matx< Tp, MeasureDim, MeasureDim > R
 测量噪声协方差矩阵 \(R\)
 
cv::Matx< Tp, StateDim, StateDim > P
 后验误差协方差矩阵 \(P\)
 
cv::Matx< Tp, StateDim, StateDim > P_
 先验误差协方差矩阵 \(P^-\)
 
cv::Matx< Tp, StateDim, StateDim > I
 单位矩阵 \(I\)
 
cv::Matx< Tp, StateDim, MeasureDim > K
 卡尔曼增益 \(K\)
 

详细描述

template<typename Tp, unsigned StateDim, unsigned MeasureDim>
class rm::ExtendedKalmanFilter< Tp, StateDim, MeasureDim >

扩展卡尔曼滤波器

模板参数
Tp数据类型
StateDim状态量个数
MeasureDim观测量个数

构造及析构函数说明

◆ ExtendedKalmanFilter()

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
rm::ExtendedKalmanFilter< Tp, StateDim, MeasureDim >::ExtendedKalmanFilter ( )
inline

构造新的 ExtendedKalmanFilter 对象

成员函数说明

◆ correct()

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
auto rm::ExtendedKalmanFilter< Tp, StateDim, MeasureDim >::correct ( const cv::Matx< Tp, MeasureDim, 1 > & zk)
inline

扩展卡尔曼滤波的校正部分,包含卡尔曼增益的计算、状态量的后验估计和误差协方差的后验估计

公式如下

\[\begin{align}K_k&=P_k^-J_H^T\left(J_HP_k^-J_H^T+VRV^T\right)^{-1}\\\hat{\pmb x} &=\hat{\pmb x}_k^-+K_k\left[\pmb z_k-\pmb f_H(\hat{\pmb x}_k^-)\right]\\P_k&=\left(I-K_kJ_H \right)P_k^-\end{align}\]

参数
[in]zk观测量
返回
后验状态估计

◆ predict()

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
auto rm::ExtendedKalmanFilter< Tp, StateDim, MeasureDim >::predict ( )
inline

扩展卡尔曼滤波的预测部分,包括状态量的先验估计和误差协方差的先验估计

公式如下

\[\begin{align}\hat{\pmb x_k}^-&=\pmb f(\hat{\pmb x}_{k-1})\\ P_k^-&=J_AP_{k-1}J_A^T+WQW^T\end{align}\]

返回
先验状态估计

◆ setFa()

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
void rm::ExtendedKalmanFilter< Tp, StateDim, MeasureDim >::setFa ( const std::function< cv::Matx< Tp, StateDim, 1 >(const cv::Matx< Tp, StateDim, 1 > &)> & state_func)
inline

设置非线性的离散状态方程 \(\pmb f_A(\pmb x)\)

参数
[in]state_func状态方程

◆ setFh()

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
void rm::ExtendedKalmanFilter< Tp, StateDim, MeasureDim >::setFh ( const std::function< cv::Matx< Tp, MeasureDim, 1 >(const cv::Matx< Tp, StateDim, 1 > &)> & observe_func)
inline

设置非线性的离散观测方程 \(\pmb f_H(\pmb x)\)

参数
[in]observe_func观测方程

◆ setJa()

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
void rm::ExtendedKalmanFilter< Tp, StateDim, MeasureDim >::setJa ( const cv::Matx< Tp, StateDim, StateDim > & state_jac)
inline

设置状态方程雅可比矩阵 \(J_A\)

参数
[in]state_jac状态方程雅可比矩阵

◆ setJh()

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
void rm::ExtendedKalmanFilter< Tp, StateDim, MeasureDim >::setJh ( const cv::Matx< Tp, MeasureDim, StateDim > & observe_jac)
inline

设置观测方程雅可比矩阵 \(J_H\)

参数
[in]observe_jac观测方程雅可比矩阵

◆ setV()

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
void rm::ExtendedKalmanFilter< Tp, StateDim, MeasureDim >::setV ( const cv::Matx< Tp, MeasureDim, MeasureDim > & measure_jac)
inline

设置测量噪声协方差雅可比矩阵 \(V\)

参见
1.2 观测方程线性化
参数
[in]measure_jac测量噪声协方差雅可比矩阵

◆ setW()

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
void rm::ExtendedKalmanFilter< Tp, StateDim, MeasureDim >::setW ( const cv::Matx< Tp, StateDim, StateDim > & process_jac)
inline

设置过程噪声协方差雅可比矩阵 \(W\)

参见
1.1 状态方程线性化
参数
[in]process_jac过程噪声协方差雅可比矩阵

该类的文档由以下文件生成: