RMVL  1.3.0
Robotic Manipulation and Vision Library
载入中...
搜索中...
未找到
rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim > 模板类 参考

卡尔曼滤波静态数据 更多...

#include <rmvl/core/kalman.hpp>

类 rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim > 继承关系图:
rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim > 的协作图:

Public 成员函数

 KalmanFilterStaticDatas ()
 构造新的卡尔曼滤波静态数据
 
void init (const cv::Matx< Tp, StateDim, 1 > &x0, Tp error)
 初始化状态以及对应的误差协方差矩阵(常数对角矩阵)
 
void init (const cv::Matx< Tp, StateDim, 1 > &x0, const cv::Matx< Tp, StateDim, 1 > &error)
 初始化状态以及对应的误差协方差矩阵(对角矩阵)
 
void setR (const cv::Matx< Tp, MeasureDim, MeasureDim > &measure_err)
 设置测量噪声协方差矩阵 \(R\)
 
void setQ (const cv::Matx< Tp, StateDim, StateDim > &process_err)
 设置过程噪声协方差矩阵 \(Q\)
 
void setP (const cv::Matx< Tp, StateDim, StateDim > &state_err)
 设置误差协方差矩阵 \(P\)
 

Protected 属性

cv::Matx< Tp, StateDim, 1 > x
 状态的后验估计 \(\hat{\pmb x}\)
 
cv::Matx< Tp, StateDim, 1 > x_
 状态的先验估计 \(\hat{\pmb x}^-\)
 
cv::Matx< Tp, MeasureDim, 1 > z
 观测向量 \(\pmb z\)
 
cv::Matx< Tp, StateDim, StateDim > Q
 过程噪声协方差矩阵 \(Q\)
 
cv::Matx< Tp, MeasureDim, MeasureDim > R
 测量噪声协方差矩阵 \(R\)
 
cv::Matx< Tp, StateDim, StateDim > P
 后验误差协方差矩阵 \(P\)
 
cv::Matx< Tp, StateDim, StateDim > P_
 先验误差协方差矩阵 \(P^-\)
 
cv::Matx< Tp, StateDim, StateDim > I
 单位矩阵 \(I\)
 
cv::Matx< Tp, StateDim, MeasureDim > K
 卡尔曼增益 \(K\)
 

详细描述

template<typename Tp, unsigned StateDim, unsigned MeasureDim>
class rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >

卡尔曼滤波静态数据

模板参数
Tp数据类型
StateDim状态量个数
MeasureDim观测量个数

构造及析构函数说明

◆ KalmanFilterStaticDatas()

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::KalmanFilterStaticDatas ( )
inline

构造新的卡尔曼滤波静态数据

成员函数说明

◆ init() [1/2]

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
void rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::init ( const cv::Matx< Tp, StateDim, 1 > & x0,
const cv::Matx< Tp, StateDim, 1 > & error )
inline

初始化状态以及对应的误差协方差矩阵(对角矩阵)

参数
[in]x0初始化的状态向量
[in]error状态误差矩阵的对角线元素
函数调用图:

◆ init() [2/2]

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
void rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::init ( const cv::Matx< Tp, StateDim, 1 > & x0,
Tp error )
inline

初始化状态以及对应的误差协方差矩阵(常数对角矩阵)

参数
[in]x0初始化的状态向量
[in]error状态误差系数
函数调用图:

◆ setP()

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
void rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::setP ( const cv::Matx< Tp, StateDim, StateDim > & state_err)
inline

设置误差协方差矩阵 \(P\)

参数
[in]state_err误差协方差矩阵 \(P\)

◆ setQ()

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
void rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::setQ ( const cv::Matx< Tp, StateDim, StateDim > & process_err)
inline

设置过程噪声协方差矩阵 \(Q\)

参数
[in]process_err过程噪声协方差矩阵 \(Q\)

◆ setR()

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
void rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::setR ( const cv::Matx< Tp, MeasureDim, MeasureDim > & measure_err)
inline

设置测量噪声协方差矩阵 \(R\)

参数
[in]measure_err测量噪声协方差矩阵 \(R\)

类成员变量说明

◆ I

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
cv::Matx<Tp, StateDim, StateDim> rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::I
protected

单位矩阵 \(I\)

◆ K

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
cv::Matx<Tp, StateDim, MeasureDim> rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::K
protected

卡尔曼增益 \(K\)

◆ P

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
cv::Matx<Tp, StateDim, StateDim> rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::P
protected

后验误差协方差矩阵 \(P\)

◆ P_

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
cv::Matx<Tp, StateDim, StateDim> rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::P_
protected

先验误差协方差矩阵 \(P^-\)

◆ Q

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
cv::Matx<Tp, StateDim, StateDim> rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::Q
protected

过程噪声协方差矩阵 \(Q\)

◆ R

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
cv::Matx<Tp, MeasureDim, MeasureDim> rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::R
protected

测量噪声协方差矩阵 \(R\)

◆ x

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
cv::Matx<Tp, StateDim, 1> rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::x
protected

状态的后验估计 \(\hat{\pmb x}\)

◆ x_

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
cv::Matx<Tp, StateDim, 1> rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::x_
protected

状态的先验估计 \(\hat{\pmb x}^-\)

◆ z

template<typename Tp , unsigned StateDim, unsigned MeasureDim>
cv::Matx<Tp, MeasureDim, 1> rm::KalmanFilterStaticDatas< Tp, StateDim, MeasureDim >::z
protected

观测向量 \(\pmb z\)


该类的文档由以下文件生成: