RMVL  1.5.0
Robotic Manipulation and Vision Library
载入中...
搜索中...
未找到
samples/camera/mv/sample_mv_auto_calib.cpp

迈德威视相机自动标定例程

#include <iostream>
#include <opencv2/calib3d.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
constexpr const char *usage =
" 示例命令行,用于从实时提要进行校准。\n"
" $ \033[33mcalibration -w=4 -h=5 -s=0.025 -o=camera.yml\033[0m\n";
constexpr const char *liveCaptureHelp =
"当使用摄像头的实时视频作为输入时,可以使用以下热键:\n"
" <ESC>, 'q' - 退出程序\n"
" 'g' - 开始捕捉图像\n"
" 'u' - 打开/关闭不失真开关\n";
static void help()
{
printf("相机标定例程 (Copy from OpenCV):\n"
"用法: calibration\n"
" -help \033[32m# 显示帮助信息\033[0m\n"
" -w=<board_width> \033[32m# 每一个板尺寸内角的数目 (格子数 - 1)\033[0m\n"
" -h=<board_height> \033[32m# 每一个板尺寸内角的数目 (格子数 - 1)\033[0m\n"
" [-pt=<pattern>] \033[32m# 图案类型: 棋盘 (chessboard) 或圆形网格 (circles, acircles)\033[0m\n"
" [-n=<number_of_frames>] \033[32m# 用于校准的帧数\033[0m\n"
" \033[32m# (如果没有指定,它将被设置为实际可用的板视图数)\033[0m\n"
" [-d=<delay>] \033[32m# 在捕捉下一个视图的后续尝试之间的最小延迟数 (单位:毫秒)\033[0m\n"
" \033[32m# (仅用于视频捕捉)\033[0m\n"
" [-s=<squareSize>] \033[32m# 用户定义的单位正方形大小 (默认为1)\033[0m\n"
" [-o=<out_camera_params>] \033[32m# 内参数的输出文件名\033[0m\n"
" [-zt] \033[32m# 假设切向失真为零\033[0m\n"
" [-a=<aspectRatio>] \033[32m# 固定长宽比(fx/fy)\033[0m\n"
" [-p] \033[32m# 把主点固定在中心\033[0m\n"
" [-v] \033[32m# 围绕水平轴翻转捕获的图像\033[0m\n"
" [-V] \033[32m# 使用视频文件,而不是图像列表,使用 [input_data]\033[0m\n"
" \033[32m# 字符串作为视频文件名\033[0m\n"
" [-su] \033[32m# 显示校正后未失真的图像\033[0m\n"
" [-ws=<number_of_pixel>] \033[32m# cornerSubPix 搜索窗口的一半 (默认为 11)\033[0m\n"
" [-dt=<distance>] \033[32m# 校准网格的左上角和右上角之间的实际距离。如果指定此参数,\033[0m\n"
" \033[32m# 将使用更精确的校准方法,该方法可能更好地用于不准确的,粗\033[0m\n"
" \033[32m# 略的平面目标。\033[0m\n"
" [input_data] \033[32m# 输入数据,为下列之一:\033[0m\n"
" \033[32m# - 文本文件,包含板子的图像列表,文本文件可以用\033[0m\n"
" \033[32m# imagelist_creator 生成\033[0m\n"
" \033[32m# - 包含单板视频的视频文件名称\033[0m\n"
" \033[32m# 如果未指定 input_data, 则使用来自摄像机的实时视图\033[0m\n"
"\n");
printf("\n%s", usage);
printf("\n%s", liveCaptureHelp);
}
enum
{
DETECTION = 0,
CAPTURING = 1,
CALIBRATED = 2
};
enum Pattern
{
CHESSBOARD,
CIRCLES_GRID,
ASYMMETRIC_CIRCLES_GRID
};
static double computeReprojectionErrors(
const std::vector<std::vector<cv::Point3f>> &objectPoints,
const std::vector<std::vector<cv::Point2f>> &imagePoints,
const std::vector<cv::Mat> &rvecs, const std::vector<cv::Mat> &tvecs,
const cv::Mat &cameraMatrix, const cv::Mat &distCoeffs,
std::vector<float> &perViewErrors)
{
std::vector<cv::Point2f> imagePoints2;
int i, totalPoints = 0;
double totalErr = 0, err;
perViewErrors.resize(objectPoints.size());
for (i = 0; i < (int)objectPoints.size(); i++)
{
projectPoints(cv::Mat(objectPoints[i]), rvecs[i], tvecs[i],
cameraMatrix, distCoeffs, imagePoints2);
err = norm(cv::Mat(imagePoints[i]), cv::Mat(imagePoints2), cv::NORM_L2);
int n = (int)objectPoints[i].size();
perViewErrors[i] = (float)std::sqrt(err * err / n);
totalErr += err * err;
totalPoints += n;
}
return std::sqrt(totalErr / totalPoints);
}
static void calcChessboardCorners(cv::Size boardSize, float squareSize, std::vector<cv::Point3f> &corners, Pattern patternType = CHESSBOARD)
{
corners.resize(0);
switch (patternType)
{
case CHESSBOARD:
case CIRCLES_GRID:
for (int i = 0; i < boardSize.height; i++)
for (int j = 0; j < boardSize.width; j++)
corners.push_back(cv::Point3f(float(j * squareSize),
float(i * squareSize), 0));
break;
case ASYMMETRIC_CIRCLES_GRID:
for (int i = 0; i < boardSize.height; i++)
for (int j = 0; j < boardSize.width; j++)
corners.push_back(cv::Point3f(float((2 * j + i % 2) * squareSize),
float(i * squareSize), 0));
break;
default:
RMVL_Error(RMVL_StsBadArg, "未知模式类型\n");
}
}
static bool runCalibration(std::vector<std::vector<cv::Point2f>> imagePoints,
cv::Size imageSize, cv::Size boardSize, Pattern patternType,
float squareSize, float aspectRatio,
float grid_width, bool release_object,
int flags, cv::Mat &cameraMatrix, cv::Mat &distCoeffs,
std::vector<cv::Mat> &rvecs, std::vector<cv::Mat> &tvecs,
std::vector<float> &reprojErrs,
std::vector<cv::Point3f> &newObjPoints,
double &totalAvgErr)
{
cameraMatrix = cv::Mat::eye(3, 3, CV_64F);
if (flags & cv::CALIB_FIX_ASPECT_RATIO)
cameraMatrix.at<double>(0, 0) = aspectRatio;
distCoeffs = cv::Mat::zeros(8, 1, CV_64F);
std::vector<std::vector<cv::Point3f>> objectPoints(1);
calcChessboardCorners(boardSize, squareSize, objectPoints[0], patternType);
objectPoints[0][boardSize.width - 1].x = objectPoints[0][0].x + grid_width;
newObjPoints = objectPoints[0];
objectPoints.resize(imagePoints.size(), objectPoints[0]);
double rms;
int iFixedPoint = -1;
if (release_object)
iFixedPoint = boardSize.width - 1;
rms = calibrateCameraRO(objectPoints, imagePoints, imageSize, iFixedPoint,
cameraMatrix, distCoeffs, rvecs, tvecs, newObjPoints,
flags | cv::CALIB_FIX_K3 | cv::CALIB_USE_LU);
printf("RMS error reported by calibrateCamera: %g\n", rms);
bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs);
if (release_object)
{
std::cout << "New board corners: " << std::endl;
std::cout << newObjPoints[0] << std::endl;
std::cout << newObjPoints[boardSize.width - 1] << std::endl;
std::cout << newObjPoints[boardSize.width * (boardSize.height - 1)] << std::endl;
std::cout << newObjPoints.back() << std::endl;
}
objectPoints.clear();
objectPoints.resize(imagePoints.size(), newObjPoints);
totalAvgErr = computeReprojectionErrors(objectPoints, imagePoints,
rvecs, tvecs, cameraMatrix, distCoeffs, reprojErrs);
return ok;
}
static void saveCameraParams(const std::string &filename, const cv::Mat &cameraMatrix,
const cv::Mat &distCoeffs, double totalAvgErr)
{
cv::FileStorage fs(filename, cv::FileStorage::WRITE);
fs << "cameraMatrix" << cameraMatrix;
fs << "distCoeffs" << distCoeffs;
fs << "avg_reprojection_error" << totalAvgErr;
}
static bool readStringList(const std::string &filename, std::vector<std::string> &l)
{
l.resize(0);
cv::FileStorage fs(filename, cv::FileStorage::READ);
if (!fs.isOpened())
return false;
size_t dir_pos = filename.rfind('/');
if (dir_pos == std::string::npos)
dir_pos = filename.rfind('\\');
cv::FileNode n = fs.getFirstTopLevelNode();
if (n.type() != cv::FileNode::SEQ)
return false;
cv::FileNodeIterator it = n.begin(), it_end = n.end();
for (; it != it_end; ++it)
{
std::string fname = (std::string)*it;
if (dir_pos != std::string::npos)
{
std::string fpath = cv::samples::findFile(filename.substr(0, dir_pos + 1) + fname, false);
if (fpath.empty())
fpath = cv::samples::findFile(fname);
fname = fpath;
}
else
fname = cv::samples::findFile(fname);
l.push_back(fname);
}
return true;
}
static bool runAndSave(const std::string &outputFilename, const std::vector<std::vector<cv::Point2f>> &imagePoints,
cv::Size imageSize, cv::Size boardSize, Pattern patternType, float squareSize,
float grid_width, bool release_object, float aspectRatio, int flags,
cv::Mat &cameraMatrix, cv::Mat &distCoeffs)
{
std::vector<cv::Mat> rvecs, tvecs;
std::vector<float> reprojErrs;
double totalAvgErr = 0;
std::vector<cv::Point3f> newObjPoints;
bool ok = runCalibration(imagePoints, imageSize, boardSize, patternType, squareSize,
aspectRatio, grid_width, release_object, flags, cameraMatrix, distCoeffs,
rvecs, tvecs, reprojErrs, newObjPoints, totalAvgErr);
printf("%s. avg reprojection error = %.7f\n",
ok ? "Calibration succeeded" : "Calibration failed",
totalAvgErr);
if (ok)
saveCameraParams(outputFilename, cameraMatrix, distCoeffs, totalAvgErr);
return ok;
}
const char *keys = "{ help | | }"
"{ w | | }"
"{ h | | }"
"{ pt | chessboard | }"
"{ n | 40 | }"
"{ d | 5000 | }"
"{ s | 1 | }"
"{ o | out_calibration.yml | }"
"{ zt | | }"
"{ a | | }"
"{ p | | }"
"{ v | | }"
"{ V | | }"
"{ su | | }"
"{ ws |11 | }"
"{ dt | | }"
"{ @input_data |0 | }";
int main(int argc, char **argv)
{
cv::CommandLineParser parser(argc, argv, keys);
if (parser.has("help"))
{
help();
return 0;
}
cv::Size imageSize;
float aspectRatio = 1;
cv::Mat cameraMatrix, distCoeffs;
std::string outputFilename;
std::string inputFilename = "";
bool undistortImage = false;
int flags = 0;
cv::FileStorage fs("out_para.yml", cv::FileStorage::READ);
int exposure = 10000;
int gain = 128;
int r_gain = 100;
int g_gain = 100;
int b_gain = 100;
fs["exposure"].isNone() ? void(0) : (fs["exposure"] >> exposure);
fs["gain"].isNone() ? void(0) : (fs["gain"] >> gain);
fs["r_gain"].isNone() ? void(0) : (fs["r_gain"] >> r_gain);
fs["g_gain"].isNone() ? void(0) : (fs["g_gain"] >> g_gain);
fs["b_gain"].isNone() ? void(0) : (fs["b_gain"] >> b_gain);
capture.set(rm::CAMERA_EXPOSURE, exposure);
capture.set(rm::CAMERA_GAIN, gain);
capture.set(rm::CAMERA_MANUAL_WB);
capture.set(rm::CAMERA_WB_RGAIN, r_gain);
capture.set(rm::CAMERA_WB_GGAIN, g_gain);
capture.set(rm::CAMERA_WB_BGAIN, b_gain);
bool flipVertical;
bool showUndistorted;
bool videofile;
clock_t prevTimestamp = 0;
int mode = DETECTION;
int cameraId = 0;
std::vector<std::vector<cv::Point2f>> imagePoints;
std::vector<std::string> imageList;
Pattern pattern = CHESSBOARD;
cv::Size boardSize;
boardSize.width = parser.get<int>("w");
boardSize.height = parser.get<int>("h");
if (parser.has("pt"))
{
std::string val = parser.get<std::string>("pt");
if (val == "circles")
pattern = CIRCLES_GRID;
else if (val == "acircles")
pattern = ASYMMETRIC_CIRCLES_GRID;
else if (val == "chessboard")
pattern = CHESSBOARD;
else
return fprintf(stderr, "无效的图案类型: 必须是棋盘或圆形\n"), -1;
}
float squareSize = parser.get<float>("s");
int nframes = parser.get<int>("n");
int delay = parser.get<int>("d");
if (parser.has("a"))
{
flags |= cv::CALIB_FIX_ASPECT_RATIO;
aspectRatio = parser.get<float>("a");
}
if (parser.has("zt"))
flags |= cv::CALIB_ZERO_TANGENT_DIST;
if (parser.has("p"))
flags |= cv::CALIB_FIX_PRINCIPAL_POINT;
flipVertical = parser.has("v");
videofile = parser.has("V");
if (parser.has("o"))
outputFilename = parser.get<std::string>("o");
showUndistorted = parser.has("su");
if (isdigit(parser.get<std::string>("@input_data")[0]))
cameraId = parser.get<int>("@input_data");
else
inputFilename = parser.get<std::string>("@input_data");
int winSize = parser.get<int>("ws");
float grid_width = squareSize * (boardSize.width - 1);
bool release_object = false;
if (parser.has("dt"))
{
grid_width = parser.get<float>("dt");
release_object = true;
}
if (!parser.check())
{
help();
parser.printErrors();
return -1;
}
if (squareSize <= 0)
return fprintf(stderr, "无效的标定板方宽度\n"), -1;
if (nframes <= 3)
return printf("无效的图像数量\n"), -1;
if (aspectRatio <= 0)
return printf("无效的纵横比\n"), -1;
if (delay <= 0)
return printf("无效的延迟\n"), -1;
if (boardSize.width <= 0)
return fprintf(stderr, "无效的标定板宽\n"), -1;
if (boardSize.height <= 0)
return fprintf(stderr, "无效的标定板高\n"), -1;
if (!inputFilename.empty())
if (!videofile && readStringList(cv::samples::findFile(inputFilename), imageList))
mode = CAPTURING;
if (!capture.isOpened() && imageList.empty())
return fprintf(stderr, "Could not initialize video (%d) capture\n", cameraId), -2;
if (!imageList.empty())
nframes = (int)imageList.size();
if (capture.isOpened())
printf("%s", liveCaptureHelp);
namedWindow("图像画面", cv::WINDOW_NORMAL);
for (int i = 0;; i++)
{
cv::Mat view, viewGray;
bool blink = false;
if (capture.isOpened())
{
cv::Mat view0;
capture.read(view0);
view0.copyTo(view);
}
else if (i < (int)imageList.size())
view = cv::imread(imageList[i], 1);
if (view.empty())
{
std::cout << "dshfaldf" << std::endl;
if (imagePoints.size() > 0)
runAndSave(outputFilename, imagePoints, imageSize,
boardSize, pattern, squareSize, grid_width, release_object, aspectRatio,
flags, cameraMatrix, distCoeffs);
continue;
}
imageSize = view.size();
if (flipVertical)
flip(view, view, 0);
std::vector<cv::Point2f> pointbuf;
cvtColor(view, viewGray, cv::COLOR_BGR2GRAY);
bool found;
switch (pattern)
{
case CHESSBOARD:
found = findChessboardCorners(view, boardSize, pointbuf,
cv::CALIB_CB_ADAPTIVE_THRESH | cv::CALIB_CB_FAST_CHECK | cv::CALIB_CB_NORMALIZE_IMAGE);
break;
case CIRCLES_GRID:
found = findCirclesGrid(view, boardSize, pointbuf);
break;
case ASYMMETRIC_CIRCLES_GRID:
found = findCirclesGrid(view, boardSize, pointbuf, cv::CALIB_CB_ASYMMETRIC_GRID);
break;
default:
return fprintf(stderr, "Unknown pattern type\n"), -1;
}
// improve the found corners' coordinate accuracy
if (pattern == CHESSBOARD && found)
cornerSubPix(viewGray, pointbuf, cv::Size(winSize, winSize),
cv::Size(-1, -1), cv::TermCriteria(cv::TermCriteria::EPS + cv::TermCriteria::COUNT, 30, 0.0001));
if (mode == CAPTURING && found &&
(!capture.isOpened() || clock() - prevTimestamp > delay * 1e-3 * CLOCKS_PER_SEC))
{
imagePoints.push_back(pointbuf);
prevTimestamp = clock();
blink = capture.isOpened();
}
if (found)
drawChessboardCorners(view, boardSize, cv::Mat(pointbuf), found);
std::string msg = mode == CAPTURING ? "100/100" : mode == CALIBRATED ? "Calibrated"
: "Press 'g' to start";
int baseLine = 0;
cv::Size textSize = cv::getTextSize(msg, 1, 1, 1, &baseLine);
cv::Point textOrigin(view.cols - 2 * textSize.width - 10, view.rows - 2 * baseLine - 10);
if (mode == CAPTURING)
{
if (undistortImage)
msg = cv::format("%d/%d Undist", (int)imagePoints.size(), nframes);
else
msg = cv::format("%d/%d", (int)imagePoints.size(), nframes);
}
putText(view, msg, textOrigin, 1, 1,
mode != CALIBRATED ? cv::Scalar(0, 0, 255) : cv::Scalar(0, 255, 0));
if (blink)
bitwise_not(view, view);
if (mode == CALIBRATED && undistortImage)
{
cv::Mat temp = view.clone();
undistort(temp, view, cameraMatrix, distCoeffs);
}
imshow("图像画面", view);
char key = static_cast<char>(cv::waitKey(capture.isOpened() ? 1 : 30));
if (key == 27)
break;
if (key == 'u' && mode == CALIBRATED)
undistortImage = !undistortImage;
if (capture.isOpened() && key == 'g')
{
mode = CAPTURING;
imagePoints.clear();
}
if (mode == CAPTURING && imagePoints.size() >= (unsigned)nframes)
{
if (runAndSave(outputFilename, imagePoints, imageSize, boardSize, pattern, squareSize,
grid_width, release_object, aspectRatio, flags, cameraMatrix, distCoeffs))
mode = CALIBRATED;
else
mode = DETECTION;
if (!capture.isOpened())
break;
}
}
if (!capture.isOpened() && showUndistorted)
{
cv::Mat view, rview, map1, map2;
initUndistortRectifyMap(cameraMatrix, distCoeffs, cv::Mat(),
getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0),
imageSize, CV_16SC2, map1, map2);
for (size_t i = 0; i < imageList.size(); i++)
{
view = cv::imread(imageList[i], 1);
if (view.empty())
continue;
// undistort( view, rview, cameraMatrix, distCoeffs, cameraMatrix );
remap(view, rview, map1, map2, cv::INTER_LINEAR);
imshow("图像画面", rview);
char c = static_cast<char>(cv::waitKey());
if (c == 27 || c == 'q' || c == 'Q')
break;
}
}
return 0;
}
迈德威视相机库
迈德威视相机库
定义 mv_camera.h:36
@ OpenCV
使用 OpenCV 的 'cvtColor' 进行处理
@ CAMERA_WB_BGAIN
白平衡蓝色分量
定义 camutils.hpp:107
@ CAMERA_WB_GGAIN
白平衡绿色分量
定义 camutils.hpp:106
@ CAMERA_MANUAL_EXPOSURE
手动曝光
定义 camutils.hpp:97
@ CAMERA_EXPOSURE
曝光值
定义 camutils.hpp:102
@ CAMERA_MANUAL_WB
手动白平衡
定义 camutils.hpp:100
@ CAMERA_WB_RGAIN
白平衡红色分量
定义 camutils.hpp:105
@ CAMERA_GAIN
模拟增益
定义 camutils.hpp:103
@ Continuous
连续采样
consteval std::size_t size(auto &&...args)
获取指定类型的成员个数
定义 util.hpp:315
#define RMVL_Error(code, msg)
调用错误处理程序
定义 util.hpp:208
@ RMVL_StsBadArg
参数异常 Bad argument
定义 util.hpp:85
static CameraConfig create(Args &&...modes)
创建相机初始化配置模式
定义 camutils.hpp:70