RMVL
1.5.0
Robotic Manipulation and Vision Library
|
扩展卡尔曼滤波
\[ \def\red#1{\color{red}{#1}} \def\teal#1{\color{teal}{#1}} \def\green#1{\color{green}{#1}} \def\transparent#1{\color{transparent}{#1}} \def\orange#1{\color{orange}{#1}} \def\Var{\mathrm{Var}} \def\Cov{\mathrm{Cov}} \def\tr{\mathrm{tr}} \def\fml#1{\text{(#1)}} \def\ptl#1#2{\frac{\partial#1}{\partial#2}} \]
在阅读本教程前,请确保已经熟悉标准的 卡尔曼滤波 ,因为核心公式不变,只是在原来的基础上增加了非线性函数线性化的部分。
对于一个线性系统,可以用状态空间方程描述其运动过程
\[\begin{align}\dot{\pmb x}&=A\pmb x+B\pmb u\\\pmb y&=C\pmb x\end{align}\tag{1-1}\]
离散化,并考虑噪声后可以写为
\[\begin{align}\dot{\pmb x}_k&=A\pmb x_{k-1}+B\pmb u_{k-1}+\pmb w_{k-1}&&\pmb w_{k-1}\sim N(0,Q)\tag{1-2a}\\ \pmb z_k&=H\pmb x_{k-1}+\pmb v_k&&\pmb v_k\sim N(0,R)\tag{1-2b}\end{align}\]
但对于一个非线性系统,我们就无法使用矩阵来表示了,我们需要写为
\[\left\{\begin{align}\dot{\pmb x}_k&=\pmb f_A(\pmb x_{k-1},\pmb u_{k-1},\pmb w_{k-1})\\ \pmb z_k&=\pmb f_H(\pmb x_{k-1},\pmb v_{k-1})\end{align}\right.\tag{1-3}\]
其中, \(\pmb f_A\) 和 \(\pmb f_H\) 都为非线性函数。我们在非线性函数中同样考虑了噪声,但是对于状态量以及观测量本身的噪声而言,正态分布的随机变量通过非线性系统后就不再服从正态分布了。因此我们可以利用 泰勒展开 ,将非线性系统线性化,即
\[f(x)\approx f(x_0)+\frac{\mathrm df}{\mathrm dx}(x-x_0)\tag{1-4}\]
对于多元函数而言,泰勒展开可以写为
\[f(x,y,z)\approx f(x_0,y_0,z_0)+\begin{bmatrix}f'_x(x_0,y_0,z_0)&f'_y(x_0,y_0,z_0)&f'_z(x_0,y_0,z_0)\end{bmatrix}\begin{bmatrix}x-x_0\\y-y_0\\z-z_0\end{bmatrix}\tag{1-5a}\]
即
\[f(\pmb x)\approx f(\pmb x_0)+\ptl fx(\pmb x-\pmb x_0)=f(\pmb x_0)+\nabla f(\pmb x_0)(\pmb x-\pmb x_0)\tag{1-5b}\]
对公式 \(\fml{1-2a}\) 在 \(\hat{\pmb x}_{k-1}\) 处进行线性化,即选取 \(\text{k-1}\) 时刻的后验状态估计作为展开点,有
\[\pmb x_k=\pmb f_A(\hat{\pmb x}_{k-1},\pmb u_{k-1},\pmb w_{k-1})+J_A(\pmb x_{k-1}-\hat x_{k-1})+W\pmb w_{k-1}\tag{1-6}\]
令 \(\pmb w_{k-1}=\pmb 0\),则 \(f_A(\hat{\pmb x}_{k-1},\pmb u_{k-1},\pmb w_{k-1})=f_A(\hat{\pmb x}_{k-1},\pmb u_{k-1},\pmb 0)\stackrel{\triangle}=\tilde{\pmb x}_{k-1}\),有
\[\red{\pmb x_k=\tilde{\pmb x}_{k-1}+J_A(\pmb x_{k-1}-\hat x_{k-1})+W\pmb w_{k-1}\qquad W\pmb w_{k-1}\sim N(0,WQW^T)\tag{1-7}}\]
其中
\[\begin{align}J_A&=\left.\ptl{f_A}{\pmb x}\right|_{(\hat{\pmb x}_{k-1},\pmb u_{k-1})}=\begin{bmatrix}\ptl{{f_A}_1}{x_1}&\ptl{{f_A}_1}{x_2}&\cdots&\ptl{{f_A}_1}{x_n}\\\ptl{{f_A}_2}{x_1}&\ptl{{f_A}_2}{x_2}&\cdots&\ptl{{f_A}_2}{x_n}\\\vdots&\vdots&\ddots&\vdots\\\ptl{{f_A}_n}{x_1}&\ptl{{f_A}_n}{x_2}&\cdots&\ptl{{f_A}_n}{x_n}\end{bmatrix}\\ W&=\left.\ptl{f_A}{\pmb w}\right|_{(\hat{\pmb w}_{k-1},\pmb u_{k-1})}\end{align}\]
对公式 \(\fml{1-2b}\) 在 \(\hat{\pmb x}_k\) 处进行线性化,有
\[\pmb z_k=\pmb f_H(\tilde{\pmb x}_k,\pmb v_k)+J_H(\pmb x_k-\tilde x_k)+V\pmb v_k\tag{1-8}\]
令 \(\pmb v_k=\pmb 0\),则 \(f_H(\tilde{\pmb x}_k,\pmb v_k)=f_H(\tilde{\pmb x}_k,\pmb 0)\stackrel{\triangle}=\tilde{\pmb z}_k\),有
\[\red{\pmb z_k=\tilde{\pmb z}_k+J_H(\pmb x_k-\tilde x_k)+V\pmb v_k\qquad V\pmb v_k\sim N(0,VRV^T)\tag{1-9}}\]
其中
\[J_H=\left.\ptl{f_H}{\pmb x}\right|_{\tilde{\pmb x}_k},\qquad V=\left.\ptl{f_H}{\pmb v}\right|_{\tilde{\pmb x}_k}\]
根据卡尔曼滤波的 1.7 汇总 可以相应的改写非线性系统下的卡尔曼滤波公式,从而得到如下的扩展卡尔曼滤波公式。
① 预测
\[\hat{\pmb x}_k^-=\pmb f_A(\pmb x_{k-1},\pmb u_{k-1},\pmb 0)\]
\[P_k^-=J_AP_{k-1}J_A^T+WQW^T\]
② 校正(更新)
\[K_k=P_k^-J_H^T\left(J_HP_k^-J_H^T+VRV^T\right)^{-1}\]
\[\hat{\pmb x}_k=\hat{\pmb x}_k^-+K_k\left[\pmb z_k-\pmb f_H(\hat{\pmb x}_k^-,\pmb 0)\right]\]
\[P_k=(I-K_kJ_H)P_k^-\]
下面拿扩展卡尔曼模块单元测试的内容举例子