RMVL  1.5.0
Robotic Manipulation and Vision Library
载入中...
搜索中...
未找到
常微分方程(组)数值解与 Runge-Kutta 算法

涉及常用的 Euler 公式Runge-Kutta 算法

作者
赵曦
日期
2024/01/12
版本
1.0

上一篇教程:非线性方程(组)数值解与迭代法
下一篇教程:基于 TOPSIS 模型的熵权法


\[ \def\transparent#1{\color{transparent}{#1}} \]

1. 常微分方程(组)

一个质量-弹簧-阻尼系统的运动微分方程可以表示为

\[m\frac{\mathrm d^2x}{\mathrm dt^2}+c\frac{\mathrm dx}{\mathrm dt}+kx=p(t)\tag{1-1a}\]

\[m\ddot x+c\dot x+kx=p(t)\tag{1-1b}\]

可写成一阶方程组的形式,令 \(x_1=x,\quad x_2=\dot x\),有

\[\def\mat#1#2{\begin{bmatrix}#1\\#2\end{bmatrix}} \left\{\begin{align}\dot x_1&=x_2\\ \dot x_2&=-\frac kmx_1-\frac cmx_2+\frac1mp(t) \end{align}\right.\tag{1-2}\]

记 \(\dot{\pmb x}=\begin{bmatrix}\dot x_1\\\dot x_2\end{bmatrix},\quad A=\begin{bmatrix}0&1\\-\frac km&-\frac cm\end{bmatrix},\quad \pmb b(t)=\begin{bmatrix}0\\\frac1mp(t)\end{bmatrix},\quad \pmb x^{(0)}=\begin{bmatrix}x_1(t_0)\\x_2(t_0)\end{bmatrix}\),有

\[\dot{\pmb x}=A\pmb x+\pmb b(t),\quad\pmb x(t_0)=\pmb x^{(0)}\tag{1-3}\]

\(\text{(1-3)}\)在控制系统中能够经常遇见,这种表示一个在时刻 \(t_0\)带有初始条件的 2 阶线性系统,对于一般的(非线性)方程组,我们可以表示为

\[\def\rkf#1{\dot x_{#1}=f_{#1}(t,x_1,x_2,\cdots,x_k),\quad x_{#1}(t_0)=x_{#1}^{(0)}}\rkf1\\\rkf2\\\vdots\\\rkf k\]

\[\dot{\pmb x}=\pmb F(t,\pmb x),\quad\pmb x(t_0)=\pmb x^{(0)}\tag{1-4a}\]

仅有 1 条的常微分方程则表示为

\[\dot x=f(t,x),\quad x(t_0)=x^{(0)}\tag{1-4b}\]

这就是常微分方程的初值问题,即给定一个一阶常微分方程和对应的初始条件,求解出指定点或者指定范围的函数值。对于 \(\text{(1-4b)}\)形式的初值问题,我们通常截取等步长,如取

\[\begin{align} &t_0<t_1<\cdots<t_n<t_{n+1}<\cdots\\&h=t_{n+1}-t_n\quad或\quad t_{n+1}=t_n+h\quad(h=0,1,\cdots) \end{align}\]

2. 求解常微分方程的 Euler 方法

2.1 显式 Euler 单步法

先考虑一阶常微分方程 \(\text{(1-4b)}\)的形式,在取定的 \(t_n\)处 Taylor 展开,有

\[\begin{align} x_{n+1}\approx x(t_{n+1})&=x(t_n)+x'(t_n)h+x''(t_n)\frac{h^2}2+\cdots\\&=x_n+h\dot x_n+\frac{h^2}2\ddot x_n+\cdots\\ 忽略h^2以上的高阶项,有\quad&\approx x_n+hf(t_n,x_n) \end{align}\tag{2-1}\]

可以得到

\[x_{n+1}=x_n+hf(t_n,x_n)\tag{2-2}\]

这便是求解常微分方程的基本方法,公式 \(\text{(2-2)}\)被称为 Explicit Euler 显式欧拉公式。

2.2 其余常见的 Euler 单步法

① Implicit Euler 隐式欧拉公式

\[x_{n+1}=x_n+hf(t_{n+1},x_{n+1})\tag{2-3a}\]

② 梯形公式

\[x_{n+1}=x_n+\frac h2\left[f(t_n,x_n)+f(t_{n+1},x_{n+1})\right]\tag{2-3b}\]

③ 改进 Euler 公式

\[\left\{\begin{align}&\tilde x_{n+1}=x_n+hf(t_n,x_n)\\ &x_{n+1}=x_n+\frac h2\left[f(t_n,x_n)+f(t_{n+1},\tilde x_{n+1})\right] \end{align}\right.\tag{2-3c}\]

同样的,对于一阶方程组,公式 \(\text{(2-2)}\)可以改写成

\[\pmb x_{n+1}=\pmb x_n+h\pmb F(t_n,\pmb x_n)\tag{2-4}\]

示例

用 Euler 方法和步长 \(h=0.1\)求解常微分方程的初值问题

\[\left\{\begin{align}y'&=x^3+y^3+1\quad(0\leq x\leq0.8)\\y(0)&=0\end{align}\right.\]

计算结果保留小数点后 6 位

解答

这里, \(f(x,y)=x^3+y^3+1,\ x_n=nh+x_0=0.1n+0=0.1n\quad(n=0,1,\cdots,8),\ y_0=0\)。由 Euler 公式计算可得

\[\def\hf#1#2{y_{#1}+h(x_{#1}^3+y_{#1}^3+1)=#2} y(0.1)\approx y_1=\hf0{0.100000}\\ y(0.2)\approx y_2=\hf1{0.200200}\\ y(0.3)\approx y_3=\hf2{0.301802}\\ y(0.4)\approx y_4=\hf3{0.407249}\\ y(0.5)\approx y_5=\hf4{0.520403}\\ y(0.6)\approx y_6=\hf5{0.646995}\\ y(0.7)\approx y_7=\hf6{0.795680}\\ y(0.8)\approx y_8=\hf7{0.980355}\]

2.3 局部阶段误差

上文的 4 种 Euler 单步法公式,使用哪种精度更高?这里要引入局部阶段误差的概念,因为每一次求解 \(x_i\)都会引入误差,并且误差会进行累积,局部截断误差不考虑迭代求解 \(x_n\)及之前的累积误差,仅考虑从 \(x_n\)到 \(x_{n+1}\)产生的误差,即认为 \(x_n=x(t_n)\)。对于显式 Euler 单步法,可以计算出其局部截断误差 \(T_{n+1}\)。

\[\begin{align} T_{n+1}&=x(t_{n+1})-x_{n+1}\\ &=x(t_{n+1})-x_n-hf(t_n,x_n)\\ &=x(t_{n+1})-x(t_n)-hx'(t_n)\\ x(t_{n+1})在t_n处\text{ Taylor }展开,有\quad&=x(t_n)+hx'(t_n)+\frac{h^2}2x''(t_n)+o(h^3)-x(t_n)-hx'(t_n)\\ &=\frac12x''(t_n)h^2+o(h^3) \end{align}\tag{2-5}\]

可以看出局部截断误差的主项为 \(0.5x''(t_n)h^2\),我们称显式 Euler 单步法具有 1 阶精度。

再来考虑梯形公式 \(\text{(2-3b)}\)的局部截断误差 \(T_{n+1}\)。

\[\begin{align} T_{n+1}&=x(t_{n+1})-x(t_n)-\frac12hf(t_n,x(t_n))-\frac12hf(t_{n+1},x(t_{n+1}))\\ &=x(t_{n+1})-x(t_n)-\frac12hx'(t_n)-\frac12hx'(t_{n+1})\\ &=\left[x(t_n)+hx'(t_n)+\frac{h^2}2x''(t_n)+\frac{h^3}6x'''(t_n)+o(h^4)\right]-x(t_n)-\\ &\qquad\frac12hx'(t_n)-\frac12h\left[x'(t_n)+hx''(t_n)+\frac{h^2}2x'''(t_n)+o(h^3)\right]\\ &=-\frac1{12}x'''(t_n)h^3+o(h^4) \end{align}\tag{2-6}\]

局部截断误差的主项为 \(-\frac1{12}x'''(t_n)h^3\),我们称梯形公式具有 2 阶精度。

3. Runge-Kutta 方法

对于 \(\text{(2-3c)}\)的改进 Euler 公式,可以改写成

\[\left\{\begin{align} x_{n+1}&=x_n+h\left(\frac12k_1+\frac12k_2\right)\\ k_1&=f(t_n,x_n)\\k_2&=f(t_n+h,x_n+hk_1) \end{align}\right.\tag{3-1}\]

模仿这一写法,我们继续构造新的 2 阶公式

3.1 二阶 Runge-Kutta 公式

注解
此小节为 2 阶 Runge-Kutta 公式族的推导,涉及到多元函数 \(f(x,y)\)的全导数

\[\begin{align}\frac{\mathrm df}{\mathrm dx}&=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}·\frac{\mathrm dy}{\mathrm dx}\\ f'&=f_x+f_yy'\end{align}\tag{i}\]

以及多元函数 \(f(x,y)\)的 Taylor 展开,令 \(\pmb x=(x-x_0,\ y-y_0)^T\),则多元函数 Taylor 展开如下

\[\begin{align}f(x,y)&=f(x_0,y_0)+\begin{bmatrix}f_x(x_0,y_0)&f_y(x_0,y_0)\end{bmatrix}\pmb x+\\ &\transparent=\frac1{2!}\pmb x^T\begin{bmatrix}f_{xx}(x_0,y_0)&f_{xy}(x_0,y_0)\\f_{yx}(x_0,y_0)&f_{yy}(x_0,y_0)\end{bmatrix}\pmb x+o^n\end{align}\tag{ii}\]

若仅想了解最终结果,请跳过此小节

\[\left\{\begin{align} x_{n+1}&=x_n+h(\lambda_1k_1+\lambda_2k_2)\\ k_1&=f(t_n,x_n)\\k_2&=f(t_n+ph,x_n+phk_1) \end{align}\right.\tag{3-2}\]

其中 \(\lambda_1,\lambda_2,p\)为待定参数,先分别将 \(x(t_{n+1})\)和 \(x_{n+1}\)在 \(t_n\)处 Taylor 展开。

对 \(x(t_{n+1})\),有

\[\begin{align} x(t_{n+1})&=x(t_n)+hx'(t_n)+\frac{h^2}2x''(t_n)+o(h^3)\\ &=x(t_n)+hf(t_n,x(t_n))+\frac{h^2}2\frac{\mathrm d}{\mathrm dt}f(t_n,x(t_n))+o(h^3)\\ &=x(t_n)+hf(t_n,x(t_n))+\\ &\transparent=\frac{h^2}2\left[\frac{\partial f(t_n,x(t_n))}{\partial t}+\frac{\partial f(t_n,x(t_n))}{\partial x}·\frac{\mathrm dx}{\mathrm dt}\right]+o(h^3)\\ 令f(t_n,x(t_n))=(f)_{(n)}\quad&=x(t_n)+h(f)_{(n)}+\frac{h^2}2\left[\frac{\partial (f)_{(n)}}{\partial t}+\frac{\partial (f)_{(n)}}{\partial x}\frac{\mathrm dx}{\mathrm dt}\right]+o(h^3)\\ 由f(t_n,x(t_n))=\frac{\mathrm dx}{\mathrm dt}\quad&=x(t_n)+h(f)_{(n)}+\frac{h^2}2\left[\frac{\partial (f)_{(n)}}{\partial t}+\frac{\partial (f)_{(n)}}{\partial x}(f)_{(n)}\right]+o(h^3)\\ &=x(t_n)+h(f)_{(n)}+\frac{h^2}2(f_t+f_xf)_{(n)}+o(h^3)\tag{3-3} \end{align}\]

对 \(x_{n+1}\),有

\[\begin{align}x_{n+1}&=x_n+h\left[\lambda_1f(t_n,x_n)+\lambda_2f(t_n+ph,x_n+phf(t_n,x_n))\right]\\ &=x_n+h\lambda_1f(t_n,x_n)+h\lambda_2\left[f(t_n,x_n)+ph\frac{\partial f(t_n,x_n)}{\partial t}+\right.\\ &\transparent=\left.phf(t_n,x_n)\frac{\partial f(t_n,x_n)}{\partial x}+o(h^2)\right]\\ 令f(t_n,x_n)=(f)_n\quad&=x_n+h\lambda_1(f)_n+\\ &\transparent=h\lambda_2\left[(f)_n+ph\frac{\partial(f)_n}{\partial t}+ph(f)_n\frac{\partial(f)_n}{\partial x}+o(h^2)\right]\\ &=x_n+h\lambda_1(f)_n+h\lambda_2\left[(f)_n+ph(f_t)_n+ph(f)_n(f_x)_n+o(h^2)\right]\\ &=x_n+h(\lambda_1+\lambda_2)(f)_n+ph^2\lambda_2(f_t+f_xf)_n+o(h^3) \end{align}\tag{3-4}\]

为求局部截断误差,则满足 \(x(t_n)=x_n,\ (f)_{(n)}=(f)_n,\ (f_t+f_xf)_{(n)}=(f_t+f_xf)_n\),因此 \(T_{n+1}=\text{(3-3)}-\text{(3-4)}\),即

\[\begin{align} T_{n+1}&=x(t_{n+1})-x_{n+1}\\ &=(1-\lambda_1-\lambda_2)(f)_n+\left(\frac12-p\lambda_2\right)h^2(f_t+f_xf)_n+o(h^3) \end{align}\tag{3-5}\]

我们希望这个公式具有 2 阶精度,即局部截断误差的主项为 0,因此有

\[\left\{\begin{align} &\lambda_1+\lambda_2=1\\ &p\lambda_2=\frac12 \end{align}\right.\tag{3-6}\]

\(\text{(3-2)}\)和 \(\text{(3-6)}\)联立构成 2 阶精度的单步显式公式族,由于使用到了 2 个斜率值 \(k_1\)和 \(k_2\),因此称为 2 级 2 阶 Runge-Kutta 公式族,最常用的是当 \(\lambda_1=0\)即 \(\lambda_2=1,\quad p=\frac12\),这时得到所谓 2 级 2 阶中点公式

\[\begin{align}x_{n+1}&=x_n+hk_2\\k_1&=f(t_n,x_n)\\ k_2&=f\left(t_n+\frac h2,x_n+\frac h2k_1\right)\end{align}\tag{3-7}\]

3.2 Butcher 表

为了便于记录上文的 Runge-Kutta 中点公式,我们将公式 \(\text{(3-2)}\)改写为

\[\left\{\begin{align}x_{n+1}&=x_n+h(\lambda_1k_1+\lambda_2k_2)\\k_1&=f(t_n+p_1h,x_n+h(a_{11} k_1+a_{12}k_2))\\k_2&=f(t_n+p_2h,x_n+h(a_{21}k_1+a_{22}k_2))\end{align}\right.\tag{3-8}\]

令 \(\pmb p=\mat{p_1}{p_2},\quad\pmb\lambda=(\lambda_1,\lambda_2),\quad R=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix}\),则

\[\begin{array}{c|c}\pmb p&R\\\hline&\pmb\lambda\end{array}\Rightarrow\begin{array}{c|cc}p_1& a_{11}&a_{12}\\p_2&a_{21}&a_{22}\\\hline&\lambda_1&\lambda_2\end{array}\tag{3-9}\]

被称为 Butcher 表,例如,上文的中点公式可以表示为

\[\begin{array}{c|cc}0&0&0\\1&1&0\\\hline&\frac12&\frac12\end{array}\tag{3-10}\]

一般的,对于一阶方程 \(x'=f(t,x),\ x(t_0)=x^{(0)}\),有以下 \(n\)阶公式

\[\left\{\begin{align} x_{n+1}&=x_n+h(\lambda_1k_1+\lambda_2k_2+\cdots+\lambda_nk_n)\\ k_1&=f(t_n+p_1h,x_n+h(a_{11}k_1+a_{12}k_2+\cdots+a_{1n}k_n))\\ k_2&=f(t_n+p_2h,x_n+h(a_{21}k_1+a_{22}k_2+\cdots+a_{2n}k_n))\\&\vdots\\ k_n&=f(t_n+p_nh,x_n+h(a_{n1}k_1+a_{n2}k_2+\cdots+a_{nn}k_n))\\ \end{align}\right.\tag{3-11}\]

同样可以用 Butcher 表来表示:

\[\begin{array}{c|cccc} p_1&a_{11}&a_{12}&\cdots&a_{1n}\\ p_2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ p_n&a_{n1}&a_{n2}&\cdots&a_{nn}\\ \hline&\lambda_1&\lambda_2&\cdots&\lambda_n\end{array}\tag{3-12}\]

3.3 三阶 / 四阶 Runge-Kutta 公式

这里直接给出对应的 Butcher 表。

一种 3 级 3 阶 Runge-Kutta 方法的具体形式对应的 Butcher 表

\[\begin{array}{c|ccc}0&0&0&0\\\frac12&\frac12&0&0\\1&-1&2&0\\ \hline&\frac16&\frac23&\frac16\end{array}\tag{3-13a}\]

经典 4 级 4 阶 Runge-Kutta 方法对应的 Butcher 表

\[\begin{array}{c|cccc}0&0&0&0&0\\\frac12&\frac12&0&0&0\\\frac12&0&\frac12&0& 0\\1&0&0&1&0\\\hline&\frac16&\frac13&\frac13&\frac16\end{array}\tag{3-13b}\]

3.4 方程组的 Runge-Kutta 公式

对于一阶方程组 \(\pmb x'=\pmb F(t,\pmb x),\ \pmb x(t_0)=\pmb x^{(0)}\),公式 \(\text{(3-11)}\)可以改写为

\[\left\{\begin{align} \pmb x_{n+1}&=\pmb x_n+h(\lambda_1\pmb k_1+\lambda_2\pmb k_2+\cdots+\lambda_n\pmb k_n)\\ \pmb k_1&=\pmb F(t_n+p_1h,\pmb x_n+h(a_{11}\pmb k_1+a_{12}\pmb k_2+\cdots+a_{1n}\pmb k_n))\\ \pmb k_2&=\pmb F(t_n+p_2h,\pmb x_n+h(a_{21}\pmb k_1+a_{22}\pmb k_2+\cdots+a_{2n}\pmb k_n))\\&\vdots\\ \pmb k_n&=\pmb F(t_n+p_nh,\pmb x_n+h(a_{n1}\pmb k_1+a_{n2}\pmb k_2+\cdots+a_{nn}\pmb k_n))\\ \end{align}\right.\tag{3-14}\]

公式 \(\text{(3-14)}\)与 \(\text{(3-11)}\)基本一致,因此同样可以使用 Butcher 表来描述常微分方程组的 Runge-Kutta 公式。

RMVL 的相关类请参考 rm::RungeKutta

示例

使用 2 阶中点公式求解 \([0,1]\)上常微分方程的初值问题,并在 \(t=1\)处与实际值进行比较

\[\left\{\begin{align}\dot x_1&=2x_2+t\\\dot x_2&=-x_1-3x_2\end{align}\right.\\ 且满足x_1(0)=1,\quad x_2(0)=-1\]

解答

① 数值解

使用中点公式:

\[\begin{align}\pmb x_{n+1}&=\pmb x_n+h\pmb k_2\\\pmb k_1&=\pmb F(t_n,\pmb x_n)\\ \pmb k_2&=\pmb F(t_n+\frac h2,\pmb x_n+\frac h2\pmb k_1)\end{align}\]

\[\begin{align}x_{1_{n+1}}&=x_{1_n}+hk_2\\x_{2_{n+1}}&=x_{2_n}+hl_2\\ k_1&=f_1(t_n,x_{1_n},x_{2_n})\\l_1&=f_2(t_n,x_{1_n},x_{2_n})\\ k_2&=f_1(t_n+\frac h2,x_{1_n}+\frac h2k_1,x_{2_n}+\frac h2l_1)\\ l_2&=f_2(t_n+\frac h2,x_{1_n}+\frac h2k_1,x_{2_n}+\frac h2l_1)\end{align}\]

迭代运行结果如下:

t = 0.010000, x = 0.980250, -0.980200
t = 0.020000, x = 0.960992, -0.960793
t = 0.030000, x = 0.942218, -0.941772
t = 0.040000, x = 0.923921, -0.923131
t = 0.050000, x = 0.906093, -0.904863
t = 0.060000, x = 0.888727, -0.886961
t = 0.070000, x = 0.871815, -0.869420
t = 0.080000, x = 0.855350, -0.852232
t = 0.090000, x = 0.839325, -0.835393
t = 0.100000, x = 0.823734, -0.818895
t = 0.110000, x = 0.808570, -0.802734
t = 0.120000, x = 0.793825, -0.786903
t = 0.130000, x = 0.779494, -0.771396
t = 0.140000, x = 0.765569, -0.756209
t = 0.150000, x = 0.752045, -0.741335
t = 0.160000, x = 0.738916, -0.726770
t = 0.170000, x = 0.726174, -0.712507
t = 0.180000, x = 0.713815, -0.698543
t = 0.190000, x = 0.701833, -0.684871
t = 0.200000, x = 0.690221, -0.671487
t = 0.210000, x = 0.678973, -0.658386
t = 0.220000, x = 0.668085, -0.645563
t = 0.230000, x = 0.657551, -0.633014
t = 0.240000, x = 0.647365, -0.620734
t = 0.250000, x = 0.637521, -0.608717
t = 0.260000, x = 0.628016, -0.596961
t = 0.270000, x = 0.618843, -0.585460
t = 0.280000, x = 0.609998, -0.574210
t = 0.290000, x = 0.601475, -0.563207
t = 0.300000, x = 0.593269, -0.552447
t = 0.310000, x = 0.585377, -0.541926
t = 0.320000, x = 0.577792, -0.531639
t = 0.330000, x = 0.570511, -0.521584
t = 0.340000, x = 0.563529, -0.511755
t = 0.350000, x = 0.556841, -0.502149
t = 0.360000, x = 0.550443, -0.492763
t = 0.370000, x = 0.544331, -0.483592
t = 0.380000, x = 0.538499, -0.474634
t = 0.390000, x = 0.532945, -0.465884
t = 0.400000, x = 0.527664, -0.457340
t = 0.410000, x = 0.522652, -0.448997
t = 0.420000, x = 0.517904, -0.440853
t = 0.430000, x = 0.513418, -0.432904
t = 0.440000, x = 0.509188, -0.425147
t = 0.450000, x = 0.505212, -0.417579
t = 0.460000, x = 0.501485, -0.410196
t = 0.470000, x = 0.498004, -0.402997
t = 0.480000, x = 0.494765, -0.395977
t = 0.490000, x = 0.491765, -0.389133
t = 0.500000, x = 0.489000, -0.382464
t = 0.510000, x = 0.486466, -0.375966
t = 0.520000, x = 0.484161, -0.369635
t = 0.530000, x = 0.482081, -0.363471
t = 0.540000, x = 0.480222, -0.357469
t = 0.550000, x = 0.478582, -0.351627
t = 0.560000, x = 0.477157, -0.345943
t = 0.570000, x = 0.475944, -0.340414
t = 0.580000, x = 0.474941, -0.335037
t = 0.590000, x = 0.474143, -0.329810
t = 0.600000, x = 0.473548, -0.324731
t = 0.610000, x = 0.473154, -0.319797
t = 0.620000, x = 0.472956, -0.315006
t = 0.630000, x = 0.472954, -0.310356
t = 0.640000, x = 0.473142, -0.305844
t = 0.650000, x = 0.473520, -0.301468
t = 0.660000, x = 0.474084, -0.297226
t = 0.670000, x = 0.474831, -0.293116
t = 0.680000, x = 0.475759, -0.289136
t = 0.690000, x = 0.476865, -0.285283
t = 0.700000, x = 0.478148, -0.281556
t = 0.710000, x = 0.479603, -0.277953
t = 0.720000, x = 0.481229, -0.274471
t = 0.730000, x = 0.483024, -0.271109
t = 0.740000, x = 0.484985, -0.267865
t = 0.750000, x = 0.487110, -0.264737
t = 0.760000, x = 0.489396, -0.261723
t = 0.770000, x = 0.491841, -0.258822
t = 0.780000, x = 0.494443, -0.256031
t = 0.790000, x = 0.497199, -0.253349
t = 0.800000, x = 0.500109, -0.250774
t = 0.810000, x = 0.503169, -0.248304
t = 0.820000, x = 0.506377, -0.245939
t = 0.830000, x = 0.509731, -0.243676
t = 0.840000, x = 0.513230, -0.241513
t = 0.850000, x = 0.516870, -0.239449
t = 0.860000, x = 0.520652, -0.237483
t = 0.870000, x = 0.524571, -0.235613
t = 0.880000, x = 0.528627, -0.233838
t = 0.890000, x = 0.532818, -0.232156
t = 0.900000, x = 0.537141, -0.230565
t = 0.910000, x = 0.541595, -0.229065
t = 0.920000, x = 0.546178, -0.227653
t = 0.930000, x = 0.550889, -0.226329
t = 0.940000, x = 0.555725, -0.225091
t = 0.950000, x = 0.560685, -0.223938
t = 0.960000, x = 0.565768, -0.222869
t = 0.970000, x = 0.570971, -0.221881
t = 0.980000, x = 0.576292, -0.220975
t = 0.990000, x = 0.581732, -0.220149
t = 1.000000, x = 0.587286, -0.219401

因此,在 \(t=1\)时, \(x\approx(0.587286,-0.219401)^T\)

② 精确解

对待求的初值问题写成矩阵形式

\[\dot X=\begin{bmatrix}0&2\\-1&-3\end{bmatrix}X+\mat10t,\quad X(0)=\mat1{-1}\]

由矩阵分析的知识,可以知道,对于形如

\[\dot X=AX+B(t)\tag{a}\]

的矩阵微分方程,其解为

\[X=e^{At}X(0)+\int_0^te^{A(t-\tau)}B(\tau)\mathrm d\tau\tag{b}\]

其中 \(e^{At}\)为矩阵函数,可使用

  • 矩阵的 Jordan 标准型
  • 最小多项式的 Hamilton-Cayley 定理
  • Laplace 变换

的方式进行求解,这里使用最小多项式的 Hamilton-Cayley 定理进行求解。

\(A\) 的特征多项式为 \(\varphi(\lambda)=\lambda^2+3\lambda+2=(\lambda+1)(\lambda+2)\),无重根,因此 \(A\) 的最小多项式为 \(\mu(\lambda)=(\lambda+1)(\lambda+2)\),由 Hamilton-Cayley 定理可知 \(A^2+3A+2I=0\),对 \(e^{At}\)进行 Taylor 展开,并使用带余除法,一定可以得到

\[e^{At}=a_0I+a_1A\tag{c}\]

将 \(\lambda=-1,-2\)代入 \(e^{At}\),可得

\[\left\{\begin{align}a_0+a_1(-1)&=e^{-t}\\a_0+a_1(-2)&=e^{-2t}\end{align}\right.\tag{d}\]

解得 \(\left\{\begin{align}a_0&=2e^{-t}-e^{-2t}\\a_1&=e^{-t}-e^{-2t}\end{align}\right.\),因此

\[\begin{align}e^{At}&=(2e^{-t}-e^{-2t})I+(e^{-t}-e^{-2t})A\\ &=\begin{bmatrix}2&2\\1&1\end{bmatrix}e^{-t}+\begin{bmatrix}-1&-2\\1&2\end{bmatrix}e^{-2t} \end{align}\tag{e}\]

可以算出

\[e^{At}X(0)=\mat00e^{-t}+\mat1{-1}e^{-2t}=\mat1{-1}e^{-2t}\tag{f}\]

同理有

\[\int_0^te^{A(t-\tau)}B(\tau)\mathrm d\tau=\mat2{-1}\left(e^{-t}+t-1\right)+ \mat{-1}1\left(\frac14e^{-2t}+\frac12t-\frac14\right)\tag{g}\]

整理得

\[\begin{align}X&=e^{At}X(0)+\int_0^te^{A(t-\tau)}B(\tau)\mathrm d\tau\\ &=\mat{0.75}{-0.75}e^{-2t}+\mat2{-1}e^{-t}+\mat{1.5}{-0.5}t+\mat{-1.75}{0.75}\end{align}\tag{h}\]

把 \(t=1\) 代入上式,可得 \(X=\mat{0.75e^{-2}+2e^{-1}-0.25}{-0.75e^{-2}-e^{-1}+0.25}\approx\mat{0.587260}{-0.219381}\),数值解 \(X=\mat{0.587286}{-0.219401}\)与之相符。

代码

rm::Ode dot_x1 = [](double t, const std::vector<double> &x) { return 2 * x[1] + t; };
rm::Ode dot_x2 = [](double, const std::vector<double> &x) { return -x[0] - 3 * x[1]; };
rm::Odes fs = {dot_x1, dot_x2};
// 计算精确解
double real_x1 = 0.75 * std::exp(-2) + 2 * std::exp(-1) - 0.25;
double real_x2 = -0.75 * std::exp(-2) - std::exp(-1) + 0.25;
// 2 阶 2 级中点公式
// 计算数值解
auto res2 = rk2.solve(0, {1, -1}, 0.01, 100);
printf("x* = (%f, %f)\n", real_x1, real_x2);
printf("x = (%f, %f)\n", res2[0], res2[1]);
/*
输出结果为
x* = (0.587260, -0.219381)
x = (0.587286, -0.219401)
*/
2 阶 2 级 Runge-Kutta 求解器
定义 numcal.hpp:274
std::vector< Ode > Odes
常微分方程组
定义 numcal.hpp:198
std::function< double(double, const std::vector< double > &)> Ode
常微分方程
定义 numcal.hpp:196